Interfacing Python with Fortran

Bob Dowling
University Computing Service

www.ucs.cam.ac.uk/docs/course-notes/unix-courses/pythonfortran
Outline of course

Python vs. Fortran

Fortran 9x subroutine → Python function

Fortran 77 interlude

Efficiency

We start by comparing Python and Fortran, seeing them as complements rather than opposites. Then we get to work converting a Fortran 95 subroutine into a module callable from Python. We will work mainly in Fortran 95 but will review how to make it work with Fortran 77. Finally we will address a few more efficiency improvements we can make.
Python is a general purpose scripting language. It's excellent for gluing components of a task together and for high-level programming. It's dynamic nature (variables don't need to be declared up front; Python just makes sure they have what it needs as they go along) makes it very easy to use for quick programs. But it is an interpreted scripting language; it cannot compete with languages compiled down to machine code for speed.

Fortran is such a language. It compiles to machine code and the design of the language means it can be optimized very well. It is designed for numerical work (Formula Translation) and, despite the ongoing criticisms from the computing language snobs, has shown its worth by surviving and adapting over the past fifty years since its creation in 1957 (the first Fortran compiler). It is not, however, a general purpose programming language.
But there is no reason why we cannot get the best of both worlds. Python and Fortran should not be thought of as in opposition but as complements for one another.

In this course we will write our high-level program in Python and call Fortran subroutines for the numerically intensive elements.

Note that often, if you can write your code using the Numerical Python module, you can get all the benefits of compiled code without having to write a single line of Fortran. However, there are times where the Fortran library you are trying to work with already exists and you need to glue Python to it.
As our running example of a numerical routine we will take an easy case so that we don't distract ourselves with numerical detail. We will calculate the discrete “∇^2” on a rectangular grid. The time taken to do this scales linearly with the total size of the array being processed.

NB The author does not suggest that you go out and write your own ∇^2 programs. There are better ways to do this in Python and Fortran. This simply acts as an easily recognized proxy for whatever Fortran you might have to hand.
We could do this with pure Python. We might imagine (and soon we will see) one Python script (program.py, say) containing the high level logic of a program and a second one (thing.py, say) containing a module of the various numerical routines. The Python interpreter would run through program.py, calling routines out of thing.py as needed.

Splitting the numerical functions out to a separate file is not contrived; it makes perfect sense as you may want to use these routines in other Python programs.
Our aim will be to replace the Python module with a set of Fortran files so that the numerical routines can be written in Fortran and called from Python as if it was just another module. In practice it won't be quite as simple as our ideal shown in the slide, but it won't be too bad. (The example shows a Fortran 95 program. We can use Fortran 77 or Fortran 95 but in this course we will work in a contemporary Fortran.)
Of course Fortran is a compiled language, so Python can't interpret directly from the source code. Instead we take the Fortran file and compile it using a special program called f2py which creates a dynamic library ("shared object") file which contains native machine code (which gives it the Fortran speed) but whose functions have the interfaces of a Python module (which lets us call it from Python).
We're going to be throwing about arrays of numerical data in this course, so we will start by reminding ourselves how Python normally handles arrays of data. Suppose we have a two dimensional grid of data points. Mathematically we would represent the data as a_{jk} where j marks the row and k the column. In compliance with the Python numbering convention we start counting at 0.

Python has lists. So our array is treated in Python as a list of rows. Each of those rows is a list of the values in that row. This makes it easy to refer to a row of data at a time, but harder to refer to a column.
Fortran has contiguous blocks of memory to store arrays. The Fortran compiler works out where in that block any particular reference is. References to rows and columns etc. are converted into start positions, end positions and “strides” – the number of elements in memory to skip each time. Fortran can refer to rows and columns with equal ease, therefore. Note the order in which the array data is laid out in memory. The first index varies fastest (i.e. every item).
C stores arrays in a way very similar to Python's list of lists. Each list is laid down in memory one after the other. A row is identified as an offset into this block of elements. There is no way to refer to a column. In this it has exactly the same limitations as Python.

Note that the order of elements in a C array is different from the Fortran order. In C the first index varies slowest.
The Numerical Python module, “numpy”, adds a class of arrays which are equivalent to the Fortran arrays in their properties. We can refer to both rows and columns using slice notation. In fact, we have an extended Python slice syntax so we can go far beyond what Fortran can refer to. NumPy orders its elements in memory in the C order by default. However, NumPy can be told to order its elements internally in Fortran order and this is what we will see here. For almost all purposes it doesn’t matter because the abstraction layer hides the internal ordering from us.
Given that we are going to be working with arrays we should see a simple Python trick for creating arrays simply. Python has a neat syntax for creating lists of values by twisting the usual for loop inside a list. It was designed to evaluate functions for values in lists:

```python
>>> [ x**2 for x in range(0,10) ]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> ['m%sss' % x for x in ['a', 'e', 'i', 'o', 'u']]
['mass', 'mess', 'miss', 'moss', 'muss']
```

but there is no reason why it can't be used with constant values to initialise a list of zeroes, say:

```python
>>> [ 0.0 for x in range(0,10) ]
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
```
Python trick for creating arrays

inner loop: each row has five columns
[[0.0 for col in range(0, 5)]
for row in range(0, 3)]
[[0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0]]

outer loop: there are three rows

That list can be regarded as one row so we can repeat the trick to create a list of those lists:

>>> [[0.0 for x in range(0,10)] for y in range(0,5)]
[[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]]
So let's get started with a pure Python example. In the directory `pure-python` is a simple program that spits out some results which don't interest us. What matters is that it has the two-way split of a program file and a module file.
The code involved is not that complex for our simple example. The module defines the function that calculates ∇^2 and the program calls it.
We can run the command and also time it. When we come to work on the mixed Python/Fortran example, we will compare the results we get with those generated here. We will also compare the time taken.

For those of you who have not seen the “time” command before, it yields three measures of how long a command took to run.

“Real time” is the elapsed, clock on the wall time taken. This includes the time when your command wasn't running because the computer was running other programs. It's just the difference between end and start times.

“User time” is the measure of how much system time went into running your code.

“System time” is the amount of system time that was taken up by the core operating system (the kernel) on behalf of your code.

For a numerical program like this, user time tends to dominate over system time.
Now let's look at an example of mixing Python and Fortran files. The directory `~/f95-python` contains two files. The `program.py` file is exactly the same as the file in the `pure-python` directory. But instead of a `thing.py` Python file there is a `thing.f95` Fortran source code file.
Write the module in Fortran 95

```fortran
subroutine del2(stuff, fuzz, m, n)
implicit none

integer, intent(in) :: m
integer, intent(in) :: n
double precision, intent(in), dimension(m,n) :: stuff
double precision, intent(out), dimension(m,n) :: fuzz

end subroutine del2
```

The `thing.f95` file contains a subroutine with the same name as the function in the `thing.py` file we saw before, `del2()`. It does not have exactly the same arguments as the Python function and is a subroutine rather than a function.

Note that we have specified the properties of the four arguments as tightly as we can in their declarations. In particular, we have specified which parameters are to be read from and which to be written into. This will matter when we come to represent this Fortran subroutine as a Python function.

Also note that we do not create the `fuzz` array. In the Fortran we assume that it has already been created and is being passed into the subroutine.
The first thing we must do is to compile the Fortran source code to machine code. We do not use the Fortran compiler directly. Instead we use a program called “f2py”. It requires a stack of options to do what we want it to do and we will examine those very soon. For the time being we will issue the command shown in the slide and see that it creates one additional file, thing.so. In machine code library terms this is a “shared object”, also known as a “dynamic library”. It is a block of machine code defining some functions that multiple programs can use.

It does not, however, simply contain the Fortran subroutine del2() so that it could be called from another Fortran program. Instead, it contains a number of functions which correspond to those needed by a Python program. This file is a machine code representation of a Python module called “thing” which can be imported into a Python program.
Mixed language example — 3

```
$ time python program.py
0.0
637.500106275
2550.00010586
...
real  2m0.519s
user  1m57.424s
sys   0m2.680s
```

So now we can run our program again but this time we use a machine code module rather than a Python module. It gives exactly the same results and is faster. (To be honest, these timing tests are way too short to give seriously meaningful data, but they are sufficient to make the point. Most of the time in this example is spent creating the input list of lists. Later we will loop over the pure Python/compiled Fortran function to get better comparisons.)
f2py is the name of the program, meaning “Fortran to Python”. It is capable of more than just creation of the module so we explicitly tell it to compile with the “-c” option. The exact options and settings required depend on the Fortran compiler being used. The option “--fcompiler” allows us to specify exactly which compiler and set of options to use. This does mean that f2py can only be used with compilers it supports but the list is long. See the appendix at the end of the notes for a full list (as of version 2.4422 of f2py). Alternatively, the command “f2py -c --help-fcompiler” will list all the compiler keys. The “-m” option specifies the name of the module being created. It does not need to match the name of the Fortran source code file. Finally we list the Fortran source code files we need to compile. In this case there is only one but it is possible to quote multiple Fortran files on the command line.
A closer look at the module

```python
>>> import thing
```

```python
>>> help(thing)
NAME	hing
DESCRIPTION
This module 'thing' is auto-generated with f2py (version:1).
```

Functions:
- `fuzz = del2(stuff,m=shape(stuff,0), n=shape(stuff,1))`

Now let's look at the module itself. We will launch Python interactively and import the module by hand. The module's `__doc__` string contains the interface definitions for the functions within the module, in our case just `del2()`. There are many things to observe in this definition and we will address them now.
The first thing we notice is that we have a module function with the same name as the Fortran subroutine. Big deal.

More interestingly, we note that while the subroutine had a parameter fuzz which was declared with intent(out) the Python function has that parameter as its return value. If multiple parameters had been declared with intent(out) then a tuple of them would have been the function's return value.

Better still, the two dimension parameters now have (the correct) default values established.

We will see the “shape()” function a bit later but in a nut-shell, the shape of an array along its 0th axis is the number of rows it has and its shape along its 1st axis is its number of columns.
As well as getting a summary of the functions in the module we can get detail from the function's.
There appears to be a bug in the current version of f2py that stops help() from working on a function. We can get to its __doc__ string directly though.

The “signature” is a posh way to describe everything about the function that you need to know from the outside, while telling you nothing about what it actually does on the inside. So the signature describes what all the arguments to the function are and what type they have to be. It also describes the types of the output without describing what they will contain.

We will go through the signature created for our new del2() function one chunk at a time.
The first line is a slightly marked up example of how the function is used from Python. We see that the function produces a single output and takes one mandatory input. The square brackets indicate optional arguments. We still don't know what the arguments (or returned value) are yet and that's what comes next. The arguments are given names for consistency throughout the signature definition. These name are taken from our function definition but of course there's no constraint on what names you choose to use.
We start with the required argument.

It is described as being an “input” argument. This isn't as self-evident as it appears. Of course it's an input argument, but it's an input-only argument. The function will not modify any part of the object being passed in.

It is described as a “rank-2 array” which means it has two axes or dimensions (rows and columns, say). In conjunction with its input-only status this tells us that no element of the array will be modified.

Next we see what it is an array of. (Real numbers, integers, complex numbers, ...) The doc strings says it is an array of 'd'. This is code for “double precision”. The set of data types will be detailed more closely in a later slide, but for now we note that this is an array of double precision numbers.

Finally, we get to see the sizes of the two axes. There are m rows and n columns. Of course, we don't know what m and n are yet; they're optional arguments. However, this identifies the two letters that will be used elsewhere to describe sizes of arrays in this signature.
Next we see the optional arguments. Here again we are told that the values are input-only and that they are integers. But most importantly we see what their default values are. We will see the `shape()` function later, but for now we just need to know that `shape(stuff, 0)` is the size of the array along “axis 0”, that is the number of rows. Similarly `shape(stuff, 1)` is the size along “axis 1”, the number of columns.

Given that these “default” values are the only ones we will ever use, we might ask ourselves why the arguments exist at all. We will see how to eliminate them, forcing the use of the `shape()` values, in a few slides' time.
Finally we see the information about the returned value(s) of the function. Here we see the same definition of the type and shape of the array as we saw for the input array. This time, of course, it is not described as an “input” parameter. Note that by specifying the bounds (m,n) the signature text indicates that the output array is the same size as the input.
Now let's look at what's happening a little more closely. We'll create an array of values to have something to throw at the function. Note that this is just a standard Python list of lists.

We can create the output array by calling the `del2()` function out of the `thing` module but if we print it out we see that it presents itself rather differently compared to the input array. Whatever it was we got from the `del2()` function, it wasn't a simple list of lists.

Note also that we are exploiting the default values set up for us by the module. We could have run

```python
>>> output = thing.del2(input, 4, 3)
```

with the same result.
>>> output = thing.del2(input)

>>> output

array([[0., 0., 0.],
 [0., 2., 0.],
 [0., 2., 0.],
 [0., 0., 0.]])

So what do we get out of the function? It’s not another Pythonic list of lists. It’s actually a NumPy n-dimensional array, numpy.ndarray.
This object can be addressed in the traditional Fortran style of a set of indices separated by commas. But while this new type of object is not a normal Python array, we are able to treat it as if it was just a standard Python “list of lists” array. The numpy.ndarray is one of those Python objects designed to behave like a list if you treat it like a list. That's why it worked transparently.
Now we will look at cleaning up the interface between Fortran and Python. We currently have some optional arguments whose values, if used, must match those of the array. Why should we have them at all? Next we will examine how to change the automatically provided function signatures given to us by f2py. We will also be able to use this technique to get Fortran 77 programs to work for us.
At the moment we simply convert directly from the Fortran 95 file to the compiled Python module.
What we are going to do is to take a more circuitous route, getting to see and modify a file which only appears internally when we go direct. This is called the “signature file” and determines the interfaces of the functions in the module created.
We will start by not changing the signature at all, to make sure that we can recreate what we already have.
Initially we take our f2py command and pass it options to tell it to build a signature file (-h thing.pyf) rather than to compile a module (-c). Because we aren't compiling anything we don't need to tell it our compiler (--fcompiler=...). Apart from that the command is the same as usual:

```
$ f2py -h thing.pyf -m thing thing.f95
```

We get a file called “thing.pyf” created. This is the signature file.
We do not need to understand the syntax of the signature file in any depth. We can follow our noses and achieve enough. We will focus on the lines corresponding to the arguments of the subroutine. The signature file in its entirety should look something like this. Note that it uses an exclamation mark, “!”, to introduce comments.

```python
python module thing ! in
    interface ! in :thing
        subroutine del2(array,fuzz,m,n) ! in :thing:thing.f95
            double precision dimension(m,n), intent(in) :: array
            double precision dimension(m,n), intent(out),
            depend(m,n) :: fuzz
            integer optional, intent(in),
            check(shape(array,0)==m), depend(array) :: m=shape(array,0)
            integer optional, intent(in),
            check(shape(array,1)==n), depend(array) :: n=shape(array,1)
        end subroutine del2
    end interface
end python module thing
```
Now we will complete the compilation process, using the signature file. Of course, this won't gain us anything because we haven't changed that file.

```
$ f2py -c --fcompiler=gnu95 -m thing thing.pyf thing.f95
```

This produces a shared object Python module which is essentially identical to the one we got from going direct. (They're not byte-for-byte identical but their functions are the same.)
The command is identical to our previous all-in-one compilation command except that the source code files are preceded by the (potentially edited) signature file.
We can check the function signatures to see they are totally unchanged.
So let's look at the signature file. We do not need to know its entire syntax, just a couple of simple tricks. We will concentrate on the lines that relate to the two optional arguments, \(m \) and \(n \) and, in particular, the “\texttt{intent()}” statement. This is derived directly from the Fortran source. In an f2py signature file, however, we can add intentions that are not legal Fortran. We adjust the text “\texttt{intent(in)}” to “\texttt{intent(in,hide)}”. This is not legal Fortran — there is no hide option — but is legal in a Python signature file.
Editing the signature file

intent(in) → intent(in, hide)

Not legal Fortran

... integer optional, intent(in, hide), check(shape(stuff,0)==m), depend(stuff) :: m=shape(stuff,0)

integer optional, intent(in, hide), check(shape(stuff,1)==n), depend(stuff) :: n=shape(stuff,1)
...

python module thing ! in
 interface ! in : thing
 subroutine del2(array, fuzz, m, n) ! in : thing : thing.f95
 double precision dimension(m,n), intent(in) :: array
 double precision dimension(m,n), intent(out), depend(m,n) :: fuzz
 integer optional, intent(in, hide), check(shape(array,0)==m), depend(array) :: m=shape(array,0)
 integer optional, intent(in, hide), check(shape(array,1)==n), depend(array) :: n=shape(array,1)
 end subroutine del2
 end interface
end python module thing
Now we will rebuild the Python module using our modified signature file.
The new del2() function

```python
>>> import thing

>>> print thing.del2.__doc__
del2 - Function signature:
    fuzz = del2(stuff)
...

And now we see a new function signature from the Python module with no mention of the optional arguments and a far more “Pythonic” style of interface.

Is it worth doing?
If you are creating a “quickie” Python interface for just your own quick use then almost certainly not.
If you are creating a module for use and re-use, possibly by other people who know less about the Fortran than you do, then almost certainly it is worth it.
There is one other reason for introducing signature files. They are one route towards integrating Fortran 77 to Python.
If you aren't interested in Fortran 77 you can stop listening for a bit. First we change directory to ~/f77-python.
Once there we build a Python module just as we have in the past. We don’t need to specify the --fcompiler option; it defaults to Fortran 77.
A Fortran 77 interlude

We observe that the function is not what we want. The Python function has been created with what was our return value as a function argument. We need to know how to adjust this.
Instead of moving directly from the Fortran 77 source to the Python module we will create the signature file first. Once we have it we will edit it to specify that the Fortran argument is intended for outgoing values only. Then we use the edited signature file to generate the final module.

$ f2py -h thing.pyf -m thing thing.f
Edit thing.pyf
$ f2py -c -m thing thing.pyf thing.f
And now we find that the function has the signature we wanted.
If we had wanted to we could have added intent(in,hide) for m and n too.
Finally, we will consider a small efficiency improvement that we can make. Our greatest gain, of course, is that the core numerical routine is written in Fortran and compiled to machine code rather than being written in Python and interpreted.

The input Python list of lists gets automatically converted to a NumPy array. This takes time. Similarly the output NumPy array has to be created to be passed to the Fortran subroutine.
These are just one-off conversions and creations. However, they can mount up in any looping environment where the f2py-created module function is used repeatedly.
First, we can eliminate the conversion of a Python list of lists to a NumPy array if we can reuse the same array in each iteration of the loop. We still have to set its values each loop but we are spared the actual creation of the object.
We can create a Python list of lists outside the loop and convert it to a NumPy array outside the loop. Any changes to the values we want to make inside the loop have to be made to the NumPy array. So this is a rather silly way to create a NumPy array.
Better is to create the NumPy array directly and then set its values. Recall that the `numpy.array()` function converts Python lists into NumPy arrays. The `numpy.ndarray()` function creates NumPy arrays directly.
Similarly, if we can provide the embedded Fortran subroutine with the same NumPy array each time and just have the Fortran subroutine overwrite its previous values we are saved the effort of creating it each time too.
So as well as creating the input NumPy array, we create the output one too. Note how we can make sure it matches the input array exactly.
So is it worth it?

Here are some timing tests for a 3,000×2,000 grid, each performed a hundred times. The absolute values are meaningless but the ratios are revealing.

Again, the major saving is in converting the core subroutine from Python to Fortran. We do get further savings from not recreating objects unnecessarily, in both the pure Python and mixed Python/Fortran worlds. But converting from Python to Fortran gains us a factor of 10 speed improvement. Converting to efficient Fortran gains us a factor of 20. Not bad for an afternoon's work.
f2py supported compilers

The complete set of Fortran compilers known to your instance of f2py can be ascertained with the command “f2py -c --help-fcompiler”.

The complete set for version 2.4422 of f2py is given here. Compilers are identified by key with the options “f2py -c --fcompiler=key ...”.

<table>
<thead>
<tr>
<th>Key</th>
<th>Description of compiler</th>
</tr>
</thead>
<tbody>
<tr>
<td>absoft</td>
<td>Absoft Corporation Fortran Compiler</td>
</tr>
<tr>
<td>compaq</td>
<td>Compaq Fortran Compiler</td>
</tr>
<tr>
<td>g95</td>
<td>G95 Fortran Compiler (g95)</td>
</tr>
<tr>
<td>gnu95</td>
<td>GNU Fortran 95 compiler (gfortran, the successor to g95)</td>
</tr>
<tr>
<td>gnu</td>
<td>GNU Fortran 77 compiler (g77)</td>
</tr>
<tr>
<td>hpux</td>
<td>HP Fortran 90 Compiler</td>
</tr>
<tr>
<td>ibm</td>
<td>IBM XL Fortran Compiler</td>
</tr>
<tr>
<td>intel</td>
<td>Intel Fortran Compiler for 32-bit apps</td>
</tr>
<tr>
<td>intele</td>
<td>Intel Fortran Compiler for Itanium applications</td>
</tr>
<tr>
<td>intelem</td>
<td>Intel Fortran Compiler for EM64T-based applications</td>
</tr>
<tr>
<td>intelev</td>
<td>Intel Visual Fortran Compiler for Itanium applications</td>
</tr>
<tr>
<td>intelv</td>
<td>Intel Visual Fortran Compiler for 32-bit applications</td>
</tr>
<tr>
<td>lahey</td>
<td>Lahey/Fujitsu Fortran 95 Compiler</td>
</tr>
<tr>
<td>mips</td>
<td>MIPSpro Fortran Compiler</td>
</tr>
<tr>
<td>nag</td>
<td>NAGWare Fortran 95 Compiler</td>
</tr>
<tr>
<td>pg</td>
<td>Portland Group Fortran Compiler</td>
</tr>
<tr>
<td>sun</td>
<td>Sun or Forte Fortran 95 Compiler</td>
</tr>
<tr>
<td>vast</td>
<td>Pacific-Sierra Research Fortran 90 Compiler</td>
</tr>
</tbody>
</table>